from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
MINUS(s(X), s(Y)) → MINUS(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → QUOT(X, Y)
ACTIVATE(n__from(X)) → FROM(activate(X))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)
QUOT(s(X), s(Y)) → S(quot(minus(X, Y), s(Y)))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
MINUS(s(X), s(Y)) → MINUS(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → QUOT(X, Y)
ACTIVATE(n__from(X)) → FROM(activate(X))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)
QUOT(s(X), s(Y)) → S(quot(minus(X, Y), s(Y)))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
MINUS(s(X), s(Y)) → MINUS(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)
ZWQUOT(cons(X, XS), cons(Y, YS)) → QUOT(X, Y)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__s(X)) → S(activate(X))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
QUOT(s(X), s(Y)) → S(quot(minus(X, Y), s(Y)))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
MINUS(s(X), s(Y)) → MINUS(X, Y)
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(X), s(Y)) → MINUS(X, Y)
trivial
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
s > minus > 0
trivial
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X1)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zWquot(X1, X2)) → ZWQUOT(activate(X1), activate(X2))
ACTIVATE(n__zWquot(X1, X2)) → ACTIVATE(X2)
ZWQUOT(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
trivial
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
minus(X, 0) → 0
minus(s(X), s(Y)) → minus(X, Y)
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
zWquot(XS, nil) → nil
zWquot(nil, XS) → nil
zWquot(cons(X, XS), cons(Y, YS)) → cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
from(X) → n__from(X)
s(X) → n__s(X)
zWquot(X1, X2) → n__zWquot(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__zWquot(X1, X2)) → zWquot(activate(X1), activate(X2))
activate(X) → X